Ementa:
Espaços normados e espaços de Banach. Desigualdades de Holder e Minkowski. Espaços de Banach de sequências e espaços de Banach de funções. Subespaço e espaço quociente. Espaços normados de dimensão finita e o teorema de Riesz. O teorema de Hahn-Banach e suas consequências. Representação de funcionais lineares nos espaços l_p e L_p. Teorema de Representação de Riesz. Teorema de Lax-Milgram. Dualidade. Espaços de Banach reflexivos. O teorema da limitação uniforme. O teorema da aplicação aberta e o teorema do gráfico fechado. Espaços com produto interno e espaços de Hilbert. Projeções ortogonais. Conjuntos ortonormais. Desigualdade de Bessel e identidade de Parseval. Operadores lineares e contínuos. Operadores compactos em espaços de Banach. Teorema espectral para operadores compactos auto-adjuntos em espaços de Hilbert. Topologia fraca e topologia fraca-estrela. O teorema de Banach-Alaoglu.
Ano de Catálogo: 2022
Créditos: 4
Número de alunos matriculados: 14
Idioma de oferecimento: Português
Horários/Salas:
Docentes:
Reservas:
Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | A - IM23 | A - IM23 | ||||
09:00 | A - IM23 | A - IM23 | ||||
10:00 | ||||||
11:00 | ||||||
12:00 | ||||||
13:00 | ||||||
14:00 | ||||||
15:00 | ||||||
16:00 | ||||||
17:00 | ||||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |