Ementa:
Introdução e Motivação. Base Biológica: Aspectos Funcionais e Organizacionais. Fundamentos Básicos de Álgebra Linear e Otimização. Redes Neurais Não-Recorrentes. Redes Neurais Recorrentes. Mapas Auto-Organizáveis e Aprendizado Não-Supervisionado. Regularização e outras máquinas de aprendizado. Deep Learning: Otimização não-linear e funções-custo, Redes Convolucionais, Dropout, Bloco Long Short Term Memory (LSTM), Aprendizado da Representação, Manifolds, Autoencoders, Restricted Boltzmann Machines, Processamento de Linguagem Natural, Modelos de Atenção, Redes Adversárias Generativas, Interpretação da Rede Neural Treinada, Aprendizado por Reforço.
Ano de Catálogo: 2022
Créditos: 4
Número mínimo de alunos: 5
Número de alunos matriculados: 21
Idioma de oferecimento: Português
Horários/Salas:
Docentes:
Reservas:
Não possui reservas.Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
---|---|---|---|---|---|---|
07:00 | ||||||
08:00 | ||||||
09:00 | ||||||
10:00 | ||||||
11:00 | ||||||
12:00 | ||||||
13:00 | ||||||
14:00 | A - | A - | ||||
15:00 | A - | A - | ||||
16:00 | ||||||
17:00 | ||||||
18:00 | ||||||
19:00 | ||||||
20:00 | ||||||
21:00 | ||||||
22:00 | ||||||
23:00 |