Ementa:
Cálculo de várias variáveis: Aplicações diferenciáveis, Diferencial e Matriz jacobiana, Desigualdade do valor médio, Regra da Cadeia, Derivadas de ordem superior, Fórmula de Taylor, Teorema da função inversa e implícita, Forma local das imersões e submersões e o teorema do posto. Subvariedades de Rn, Valores e pontos regulares, espaço tangente, parametrizações locais. Integração, integrais de linha e de superfícies, Formas diferenciais e integração sobre variedades, Teorema de Stokes (Green e Gauss).
Bibliografia:
(1) James R. Munkres's Analysis on Manifolds. (2) Lima,Elon L.. Análise no Espaço Rn, Edgar Blücher. (3) M.Spivak. Calculus on Manifolds. (4) S. Lang. Analysis I.
Ano de Catálogo: 2022
Créditos: 4
Número de alunos matriculados: 24
Idioma de oferecimento: Português
Tipo Oferecimento: Regular
Local Oferecimento:
Horários/Salas:
Docentes:
Reservas:
| Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
|---|---|---|---|---|---|---|
| 07:00 | ||||||
| 08:00 | ||||||
| 09:00 | ||||||
| 10:00 | A - CB18 | A - CB18 | ||||
| 11:00 | A - CB18 | A - CB18 | ||||
| 12:00 | ||||||
| 13:00 | ||||||
| 14:00 | ||||||
| 15:00 | ||||||
| 16:00 | ||||||
| 17:00 | ||||||
| 18:00 | ||||||
| 19:00 | ||||||
| 20:00 | ||||||
| 21:00 | ||||||
| 22:00 | ||||||
| 23:00 |