Ementa:
Revisão de probabilidade, estimação e teoria da informação. Conceitos gerais de aprendizado de máquina. Regressão linear. Classificação linear. Redes neurais artificiais. Deep leaming. Máquinas de vetores-suporte. Aprendizado não-supervisionado. Clusterização, modelos de mistura e extração de variáveis latentes. Aprendizado por reforço. Comitês de máquinas. Árvores de decisão e random forest. Computação evolutiva.
Bibliografia:
Ano de Catálogo: 2020
Créditos: 4
Número mínimo de alunos: 3
Número de alunos matriculados: 85
Idioma de oferecimento: Português
Tipo Oferecimento: Regular
Local Oferecimento:
Horários/Salas:
Docentes:
Reservas:
Não possui reservas.| Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado | 
|---|---|---|---|---|---|---|
| 07:00 | ||||||
| 08:00 | A - | A - | ||||
| 09:00 | A - | A - | ||||
| 10:00 | ||||||
| 11:00 | ||||||
| 12:00 | ||||||
| 13:00 | ||||||
| 14:00 | ||||||
| 15:00 | ||||||
| 16:00 | ||||||
| 17:00 | ||||||
| 18:00 | ||||||
| 19:00 | ||||||
| 20:00 | ||||||
| 21:00 | ||||||
| 22:00 | ||||||
| 23:00 |