Ementa:
Distribuições a priori e posteriori. Princípios gerais da inferência bayesiana e vínculo com a inferência clássica. Conflito entre priori e posteriori. Utilidade e perda. Permutabilidade: Teorema de De Finetti. Distribuições a priori: próprias, impróprias, conjugadas, informativas e não informativas. Fator de Bayes: comparação de modelos, sensibilidade. Teste de hipóteses bayesianos e regiões de credibilidade. Métodos clássicos de aproximação: integração numérica, integração por Monte Carlo e aproximação analítica de Laplace. Amostragem bayesiana e MCMC.
Ano de Catálogo: 2019
Créditos: 4
Número de alunos matriculados: 36
Idioma de oferecimento: Português
Horários/Salas:
Docentes:
Reservas:
| Hora | Segunda | Terça | Quarta | Quinta | Sexta | Sábado |
|---|---|---|---|---|---|---|
| 07:00 | ||||||
| 08:00 | ||||||
| 09:00 | ||||||
| 10:00 | ||||||
| 11:00 | ||||||
| 12:00 | ||||||
| 13:00 | ||||||
| 14:00 | A - CB11 | A - CB14 | ||||
| 15:00 | A - CB11 | A - CB14 | ||||
| 16:00 | ||||||
| 17:00 | ||||||
| 18:00 | ||||||
| 19:00 | ||||||
| 20:00 | ||||||
| 21:00 | ||||||
| 22:00 | ||||||
| 23:00 |